ACELERACION

Una partícula en movimiento rectilíneo solo puede cambiar su velocidad bajo la acción de una aceleración en la misma dirección de su velocidad (dirigida en el mismo sentido si acelera; o en sentido contrario si desacelera). En mecánica clásica se define la aceleración como la variación de la velocidad respecto al tiempo (común a todos los observadores):

Unidades

Las unidades de la aceleración son:

- Sistema Internacional 1 m/s²
 - Sistema Cegesimal
 1 cm/s² = 1 Gal

$$\frac{m}{seg} = \frac{m}{seg^2}$$

$$\frac{seg}{1}$$

Cuál es la fórmula para la aceleración?

Para ser específicos, la aceleración se define como la tasa de cambio de la velocidad.

$$a = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i} = \frac{v_f - v_i}{t}$$

PROBLEMAS RESUELTOS

1. Calcular la aceleración (en m/s²) que se aplica para que un móvil que se desplaza en línea recta a 90 km/h reduzca su velocidad a 50. km/h en 25 segundos?

DATOS

$$Vi = 90 \frac{km}{h}$$

$$Vf = 50 \frac{km}{h}$$

$$t = 25 seg$$

$$a = .?$$

FÓRMULA

$$a = \frac{v_f - v_i}{t}$$

SOLUCIÓN

CONVERSIONES

$$90 \frac{km}{h} * \frac{1000 m}{1 km} * \frac{1 h}{3600 seg} = \frac{25 m}{seg}$$

$$50 \, \frac{km}{h} * \frac{1000 \, m}{1 \, km} * \frac{1 \, h}{3600 \, seg} \; = \; \frac{14 \, m}{seg}$$

$$\frac{\frac{14 \, m}{seg} - \frac{25 \, m}{seg}}{seg} = \frac{\frac{-11 \, m}{seg}}{seg}$$

$$= -0,44 \frac{m}{seg^2}$$
25 seg 25 seg 25 seg

2. Calcular la aceleración que aplica un tren que circula por una vía recta a una velocidad de 216 km/h si tarda 4 minutos en detenerse desde que acciona el freno.

DATOS

$$Vi = 216 \frac{km}{h}$$

CONVERSIONES

$$216 \frac{km}{h} * \frac{1000 m}{1 km} * \frac{1 h}{3600 seg} = \frac{60 m}{seg}$$

4 min *
$$\frac{60 \text{ seg}}{1 \text{ min}}$$
 = 240 seg

$$Vf = 0 \frac{km}{h}$$

$$a = .?$$

FÓRMULA

$$a = \frac{v_f - v_i}{t}$$

SOLUCIÓN

$$a = \frac{\frac{0m}{seg} - \frac{60m}{seg}}{\frac{-60m}{seg}} = -0,25 \frac{m}{seg^2}$$

$$= -0,25 \frac{m}{seg^2}$$
240 seg

3. Un ciclista que está en reposo comienza a pedalear hasta alcanzar los 16.6km/h en 6 minutos. Calcula su aceleración.

DATOS

CONVERSIONES

$$Vi = 0 \frac{km}{h}$$

$$Vf = 16,6 \frac{km}{h}$$

$$16.6 \frac{km}{h} * \frac{1000 m}{1 km} * \frac{1 h}{3600 seg} = \frac{4.6 m}{seg}$$

$$t = 6 min$$

6 min *
$$\frac{60 \text{ seg}}{1 \text{ min}}$$
 = 360 seg

$$a = .?$$

FÓRMULA

$$a = \frac{v_f - v_i}{t}$$

SOLUCIÓN

$$a = \frac{\frac{4.6 \, m}{seg} - \frac{0 \, m}{seg}}{2} = \frac{\frac{4.6 \, m}{seg}}{2}$$

$$= \frac{360 \, seg}{360 \, seg} = 0.013 \, \frac{m}{seg^2}$$

4. Un cuerpo posee una velocidad inicial de 12 m/s y una aceleración de 2 m/s² ¿Cuánto tiempo tardará en adquirir una velocidad de 144 Km/h?

DATOS

CONVERSIONES

$$Vi = 12 \frac{m}{seg}$$

$$a = 2 \frac{m}{seg^2}$$

t = .?

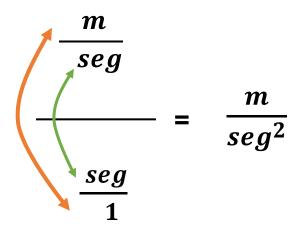
$$Vf = 144 \frac{km}{h}$$

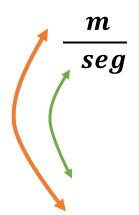
$$144 \frac{km}{h} * \frac{1000 m}{1 km} * \frac{1 h}{3600 seg} = \frac{40 m}{seg}$$

FÓRMULA

$$a = \frac{v_f - v_i}{t}$$
 luego $t = \frac{v_f - v_i}{a}$

SOLUCIÓN


$$t = \frac{\frac{144 \, m}{seg} - \frac{12 \, m}{seg}}{\frac{132 \, m}{seg}} = 0,37 \, \text{seg}$$


$$\frac{m}{360 \frac{m}{seg^2}} = \frac{360 \frac{m}{seg^2}}{\frac{m}{seg^2}}$$

PROBLEMAS PARA RESOLVER

- 5. En una carrera cuyo recorrido es recto, una moto parte del reposo y avanza durante 30 segundos hasta alcanzar una velocidad de 162 km/h. Calcula su aceleración.
- 6. Un auto fórmula 1 que parte del reposo alcanza una velocidad de 198 km/h en 10 s. Calcula su aceleración.
- 7. Una bicicleta que circula a 18 km/h frena y se detiene en 0,8 s. Calcula su aceleración.

- 8. Un motorista va a 72 Km/h y apretando el acelerador consigue al cabo de 1/3 de minuto, la velocidad de 90 Km/h. Calcula su aceleración.
- 9. En 8 s, un automóvil que parte del reposo y marcha con movimiento uniformemente acelerado ha conseguido una velocidad de 72 m/s. Calcula su aceleración.
- 10. Un tren que va a 50 Km/h debe reducir su velocidad a 25 Km/h. al pasar por un puente. Si realiza la operación en 4 segundos, Calcula su aceleración.
- 11. Un taxista que lleva una velocidad de 25 km/h y una aceleración de 3m/seg2. Cuanto tiempo se demora para adquirir una velocidad de 46 km/h?

$$\frac{m}{seg^2} = \frac{m*seg^2}{m*seg} = seg$$